激光雷达是激光探测及测距系统的简称,又称LiDAR(Light Detection And Ranging),它通过向目标发射探测信号(激光束),将从探测目标反射回来的信号与发射信号进行比较和处理,从而获得目标距离、方位、高度、速度、姿态、甚至形状等参数,主要由发射系统、接收系统、信息处理等部分组成。
一、按测距原理分类
按测距原理大体可分类为三种:ToF、FMCW和三角测距。
(一)ToF
TOF是目前最为成熟和广泛应用的测距方式,它的原理是根据光反射回的时间来测距。具体来说是通过用脉冲激光照亮目标并测量反射返回信号的特性来工作。脉冲光的宽度范围可以从几纳秒到几微秒。TOF激光雷达主要部件有激光器、放大器、光电转换器等。现阶段的TOF激光源主要有905nm和1550nm两种,一般来说905nm探测距离大约为100-200m,由于靠近可见光对人眼有影响,因此难以通过加大功率增加探测距离,导致探测距离有限。1550nm探测距离能达到250m,且有更好的安全性,但由于1550nm接收器需要采用铟镓砷光电探测器芯片,导致当前成本较高。但综合来看,ToF仍然是当前市场中最为成熟的激光雷达测距方式,是激光雷达商业化的首选方式。相比其他方式,ToF的最大优势在于探测精确、性价比高、技术成熟、响应速度快。
ToF主要分为直接飞行时间测距(direct Time of Flight,dToF)和间接飞行时间测距(indirect Time of Flight,iToF)。
dToF直接的飞行时间测距就是通过激光从发射到返回的时间t来测量距离,即D = c * t / 2。由于是利用光速测距,因此在现阶段的应用场景中,理论上不会出现因距离增加导致精度下降的情况,因此dToF的有效探测距离很远。但是dToF测距也有其缺陷,那就是关于往返飞行时间t的测量:假如物体A与物体B距离相差1.5m,则二者的往返时间t1与t2的差值约为0.00000001s,这给予计时器的测量精度极大的压力,因此通常dToF的图像分辨率不会很高。
(图片来源于CSDN)
iToF即采用间接的方法测量飞行时间,具体地说是测量接收波与发射波的相位差,转换成具体的飞行时间,再计算飞行距离。由于iToF并不直接测量飞行时间,因此不需要高精度的时间测量,所以相比于dToF,iToF的图像分辨率较高。但是如果距离过远的话,接收波的波形会出现信噪比减小、相位模糊等问题,因此iToF的有效探测距离不如dToF。
(二)FMCW
FMCW(Frequency Modulated Continuous Wave)是一种对光进行调频,根据频率差得到物体距离的测距方式。接收器采用相干检测,可以获得更高的探测距离,抗干扰能力更强,并且能够直接检测物体的速度,并立即区分静止物体、相向和同向行驶。FMCW激光雷达主要有激光器、探测器、相干光路和扫描部件(通常为OPA)构成。FMCW光源一般采用1550nm窄线宽激光器。可以通过反射信号和发射信号的频率是否相同判断物体是否处于静止状态。对于逐渐靠近的物体,返回信号会产生正向多普勒频移,对于逐渐远离的物体,返回信号会产生反向多普勒频移,导致频率发生上移或下移并由此区分物体移动方向。
(三)三角测距
三角测距方式通过激光雷达发射激光,反射光通过接收透镜打再线阵CCD/CMOS上,根据打在CCD/CMOS上的光点与主光轴的距离d,利用相似三角形原理计算出物体与激光雷达的距离D。所以,当距离很远时(即D很大,d很小时),此时d的变化就对D的变化不再敏感,激光雷达的精度大打折扣。因此三角测距原理的激光雷达一般只适用于家用扫地机器人等小场景。
缺陷是需要算法抗干扰,并根据反射率判断是否为伪目标,所以对算法有较高的要求。FMCW可以根据多普勒效应判断目标移动方向,信息更丰富且对环境强光和其他激光具有很好的抗干扰性能。总体来看测距方式未来将从TOF逐渐向FMCW切换,且两种测距方式将会在不同场景中共存。
二、按扫描方式分类
现阶段激光雷达按照扫描方式可以分为机械式、半固态和纯固态三种。
1、机械式
最初的机械式激光雷达基本都是扫描方式,但由于存在零件多、寿命短、价格贵、体积大等缺点,无法广泛应用于车载场景。机械式激光雷达收发光源、接收器以及扫描系统排列在底座上。随着外部电机的转动,收发架构会沿着这个圆盘进行转动,实现水平空间的360度扫描。优点是外部电机控制技术比较成熟且能够长时间保持稳定转速;缺点一方面是体积大难以集成到车顶,且激光雷达价格仍然过高而不符合大规模自动驾驶场景的需求,另一方面是高频的转动和复杂的机械结构导致其寿命平均为1000-3000小时,难以达到车规级设备最低13000小时的要求。
2、半固态
半固态激光雷达也称混合固态激光雷达,是当前激光雷达最主流的结构,也是现阶段市场公认的未来十年车规量产的最佳路线。相比机械式激光雷达,半固态激光雷达虽然视场相对较窄,但结构更简单、成本更低的,适合作为前置主激光雷达量产上车。半固态激光雷达的扫描方式可细分为转镜扫描、双轴镜扫描、MEMS以及棱镜扫描。目前从下游车载应用来看1550nm和双轴镜扫描方案在探测距离、精度和上车稳定性方面暂时领先;905nm的半固态方案在量产、产业链成熟度和成本上暂时领先。
转镜扫描结构有单轴镜和双轴镜,这种扫描架构的优点是收发系统固定在整个雷达模块里,旋转模块比较小,能够极大的减少体积,压缩成本。同时由于重量较轻,电机轴承负荷小,使得运行更加稳定,寿命更长,更容易满足车规需求。波长方面同时存在905nm和1550nm技术路径。
MEMS方案是用芯片级别的小镜子取代机械转轴。MEMS是芯片化的组件,摆脱了电机、镜面等机械组件,实现了毫米级的激光雷达尺寸,从而可以获得更低的成本和更高的集成度。但由于尺寸原因导致摆动角度和通光口径偏小,测距能力有限且需要更多激光器拼接多个点云,对算法和稳定性均有较高要求。在车载方面,MEMS本身属于微振动敏感性器件,易受冲击、振动、温漂的影响,在长时间车载使用的过程种中会受到一定的挑战。
棱镜扫描适合低速高精场景。棱镜扫描采用2-3块棱镜控制激光雷达扫描非重复性的方向,典型特征是输出的图像中间会比周边的扫描密度大一些。在时间充裕下可扫描整个视场。棱镜主要优点是透光性较好,不需要太多激光器、收发器,能够降低成本。同时组件可以固定,可靠性更高。棱镜方案劣势在于中心和四周的扫描区域均匀性存在差异,且成像范围不一致会导致激光雷达在高速移动过程中出现成像不连续的情况,需要后期算法补偿。基于以上特征,棱镜方案更适合扫描精度要求高、时效要求低的应用场景。
3、纯固态
固态激光雷达是激光雷达的发展方向,主要包括Flash激光雷达和OPA激光雷达。纯固态激光雷达在混合固态方案的基础上进一步简化机械结构,采用固定光源和固定探测模式,不需要扫描器件可以实现更低成本并且无需担忧电机稳定性。根据调研结果来看,目前纯固态激光雷达缺陷尚未完全解决,其中Flash激光雷达的缺点在于探测距离近;OPA激光雷达对材料要求比较苛刻,目前做出的产品也只能探测20-30m距离。Flash方案和照相机成像的原理非常类似。Flash方案的光路和架构都比较简单,收发对称,没有任何的扫描组件,成本更低、可靠性更高。缺点在于不管是采用VCSEL还是EEL光源,发射后能量发散会导致测距能力下降。
OPA激光雷达通常搭配FMCW测距方式,未来有望实现高稳定性、任意方向控制、低成本、平均功率几百毫瓦的超低功耗以及超过500m探测距离。OPA采用相干原理,在两个水波纹叠加后,如果满足半波长的整数倍,会形成相干相加或者相交的特性,可以利用这种特性控制波数的时间差从而控制扫描方向。这种方案的主要优点在于集中度很高,并且波长和方向优势带来更高信噪比,体积更小,更适合车规级需求。OPA方案的难点是插入损耗和旁瓣问题。具体来看是因为同一束光产生干涉,在相邻的几束光满足条件后很容易形成旁瓣,会有多余的能量分掉探测主能量,影响测距能力。纯固态激光雷达部分技术和光通讯类似,目前在通讯行业中III-V族半导体技术占主流,硅光芯片仍处于上升阶段,硅光技术有待突破。
Flash闪光激光雷达原理完全不同,他不是通过扫描的方式,而是在短时间内直接向前方发射出一大片覆盖探测区域的激光,通过高度灵敏的接收器实现对环境周围图像的绘制。Flash激光雷达的原理类似于拍照,但最终生成的数据包含了深度等3D数据。
由于结构简单,Flash闪光激光雷达是目前纯固态激光雷达最主流的技术方案。但是由于短时间内发射大面积的激光,因此在探测精度和探测距离上会受到较大的影响,主要用于较低速的无人驾驶车辆,例如无人外卖车、无人物流车等,对探测距离要求较低的自动驾驶解决方案中。
从扫描方式来看激光雷达从机械式逐渐向纯固态演进。通过零件更少的架构和更先进的测距方式获得更强的稳定性、更长的寿命、更远的探测距离、更高的探测精度以及更低的成本。目前已有量产车型的激光雷达多采用混合固态结构,短期来看未来5-8年混合固态激光雷达将成为主流解决方案,单个混合固态激光雷达量产后价格有望降至500美元以内;长期来看固态激光雷达在获得硅光技术突破后值得期待。